General hydrophobic interaction potential for surfactant/lipid bilayers from direct force measurements between light-modulated bilayers.

نویسندگان

  • Stephen H Donaldson
  • C Ted Lee
  • Bradley F Chmelka
  • Jacob N Israelachvili
چکیده

We establish and quantify correlations among the molecular structures, interaction forces, and physical processes associated with light-responsive self-assembled surfactant monolayers or bilayers at interfaces. Using the surface forces apparatus (SFA), the interaction forces between adsorbed monolayers and bilayers of an azobenzene-functionalized surfactant can be drastically and controllably altered by light-induced conversion of trans and cis molecular conformations. These reversible conformation changes affect significantly the shape of the molecules, especially in the hydrophobic region, which induces dramatic transformations of molecular packing in self-assembled structures, causing corresponding modulation of electrostatic double layer, steric hydration, and hydrophobic interactions. For bilayers, the isomerization from trans to cis exposes more hydrophobic groups, making the cis bilayers more hydrophobic, which lowers the activation energy barrier for (hemi)fusion. A quantitative and general model is derived for the interaction potential of charged bilayers that includes the electrostatic double-layer force of the Derjaguin-Landau-Verwey-Overbeek theory, attractive hydrophobic interactions, and repulsive steric-hydration forces. The model quantitatively accounts for the elastic strains, deformations, long-range forces, energy maxima, adhesion minima, as well as the instability (when it exists) as two bilayers breakthrough and (hemi)fuse. These results have several important implications, including quantitative and qualitative understanding of the hydrophobic interaction, which is furthermore shown to be a nonadditive interaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

Engineered-membranes: a novel concept for clustering of native lipid bilayers.

A strategy for clustering of native lipid membranes is presented. It relies on the formation of complexes between hydrophobic chelators embedded within the lipid bilayer and metal cations in the aqueous phase, capable of binding two (or more) chelators simultaneously Fig. 1. We used this approach with purple membranes containing the light driven proton pump protein bacteriorhodopsin (bR) and sh...

متن کامل

Interaction forces and adhesion of supported myelin lipid bilayers modulated by myelin basic protein.

Force-distance measurements between supported lipid bilayers mimicking the cytoplasmic surface of myelin at various surface coverages of myelin basic protein (MBP) indicate that maximum adhesion and minimum cytoplasmic spacing occur when each negative lipid in the membrane can bind to a positive arginine or lysine group on MBP. At the optimal lipid/protein ratio, additional attractive forces ar...

متن کامل

Lipid domains control myelin basic protein adsorption and membrane interactions between model myelin lipid bilayers.

The surface forces apparatus and atomic force microscope were used to study the effects of lipid composition and concentrations of myelin basic protein (MBP) on the structure of model lipid bilayers, as well as the interaction forces and adhesion between them. The lipid bilayers had a lipid composition characteristic of the cytoplasmic leaflets of myelin from "normal" (healthy) and "disease-lik...

متن کامل

The Transmembrane Helix Tilt May Be Determined by the Balance between Precession Entropy and Lipid Perturbation

Hydrophobic helical peptides interact with lipid bilayers in various modes, determined by the match between the length of the helix's hydrophobic core and the thickness of the hydrocarbon region of the bilayer. For example, long helices may tilt with respect to the membrane normal to bury their hydrophobic cores in the membrane, and the lipid bilayer may stretch to match the helix length. Recen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 38  شماره 

صفحات  -

تاریخ انتشار 2011